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Underground range fluctuations of high energy muons for 
various energy loss parameters 

E KIRALYt. P KIRALYt and J L OSBORNE 
Department of Physics. Uni%ersitj of Durham. Durham Citj.  L K  

MS received 12 August 1971 

Abstract. The variou5 methods by which the problem of range fluctuatiun~ ui muon\ 
underground can be solved are discussed. Lsing an analytical solution due t o  NishimiirJ. 
curves are derived from which the enhancement factor due to fluctuations ofthe underground 
muon intensity can quickly be obtained. for a wide range of values of the muon energ) loss 
parameters. A survey is given of previous11 published work in this field and discrepancis\ 
are resolved. 

1. Introduction 

Although there have been a number of studies of the problem of range fluctuations of 
high energy muons there is still considerable interest in the subject for several reasons. 

Some cosmic ray results (eg the X process of the Utah group (Bergeson et ui 1968) 
and the phenomenon of horizontal extensive air showers observed in Tokyo by Nagano 
et ul (1970)) suggest that the muon exhibits anomalous behaviour at high energies. A 
new form of muon interaction, in addition to the normal electromagnetic interactions, 
would imply rather large and dramatic changes in some of the energy loss processes. 
Bergeson er ul called for a photonuclear energy loss up to ten times larger than the 
conventional value to reconcile their proposal of a directly’ produced muon component 
with the observed depth-intensity measurements. Although Kiraly and Wolfendale 
(1970) have shown that the uncertainties in the primary cosmic ray spectrum make i t  
unnecessary to demand such a large increase, the question will remain open until the 
muon sea level spectrum beyond 1 TeV is directly measured by the large magnetic 
spectrometers now under construction. In order to obtain information on the energy 
loss from a comparison of this spectrum with the depth-intensity measurements, range 
fluctuation calculations for a wide range of parameter values are needed. 

For the conventional interaction processes recent calculations have given somewhat 
different values for some of the energy loss parameters. For pair production losses the 
earlier workers used expressions due to Mando and Ronchi (1952) while Meyer et al 
(1970) and Bergamasco and Picchi (1971) have used the more recent values of Kelner 
and Kotov (1968). The latter values are 40 % greater than the former. Another problem 
is that there is still considerable uncertainty in the energy losses due to photonuclear 
interactions. Cassiday (197 1 )  has resolved some of the discrepancies in the predictions of 
photonuclear energy loss but assumptions have to be made about the extrapolation 
of the measured photon-nucleon cross section above 20 GeV and the A dependence of 
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the photon-nucleus cross section. The energy loss also depends upon the type of rock 
under which intensity measurements are made. The losses due to bremsstrahlung and 
pair production are proportional to  z2/A for the rock. The calculations to date have 
been made either for ‘standard’ rock with z 2 / A  = 5.5 or Kolar rock zZ/A = 6.3 (in the 
rock overburden in the Kolar gold fields, where many underground intensity measure- 
ments have been made). These are all reasons for wishing to know the sensitivity of the 
range fluctuation effects to the values of the energy loss parameters. 

In the previously published work a number of treatments of the range fluctuation 
problem have given somewhat discordant results. It is difficult to tell whether this is due 
to the different values used for the energy loss parameters or the approximations inherent 
in the various methods of approach to the problem. In what follows, comparison with 
other workers is made in some detail and reasons advanced for the more outstanding 
differences. 

The methods of calculation adopted by the various authors fall into three main 
groups. Hayman et a1 (1963), Osborne et a1 (1968) and Bergamasco and Picchi (1971) 
have used the Monte Carlo approach, Miyake et a1 (1964), Oda and Murayama (1965) 
and Meyer et a1 (1970) have made numerical calculations, while analytical solutions 
have been obtained by Zatsepin and Mikhalchi (1962,1965), Nishimura (1964, 1965) and 
Kobayakawa (1967). The three methods have the following advantages and disad- 
vantages. Both the numerical and Monte Carlo methods lead to P(D, E),  the arrival 
probability of a muon, with energy E at the surface, at depth D underground. From this 
the intensity at  depth D underground, with fluctuations taken into account, is given by 

where Emin is the minimum possible surface energy for muons to reach depth D and 
N ( E )  dE is the differential energy spectrum of muons at the surface and can be of any 
form. The mean rate of energy loss of muons can be written as 

dE 
dx 

a + b,E -_ = 

where the first term representing ionization loss has a component rising logarithmically 
with energy and b,E represents the total losses due to bremsstrahlung, pair production 
and photonuclear interaction. According to the conventional theory of muon interac- 
tions the iactor b, also changes slowly with energy reaching an asymptotic value in the 
region of 1 to 10 TeV. The Monte Carlo approach allows one to take into account the 
variation of b, and a with energy and to use energy dependent differential cross sections. 
The disadvantage lies in the large number of particles that need to  be followed to achieve 
good statistical accuracy, since small values of the arrival probability P(D, E )  contribute 
strongly to the intensity in (1) due to the sharply falling muon spectrum. The numerical 
method also allows one to take energy dependent values of b, and a and the differential 
cross sections. Although it is free from statistical uncertainties the width of the depth 
intervals has to be small if the effect of fluctuations is not to be underestimated and this 
leads to extensive computations at  great depths. 

The analytical solution requires several approximations to he made. The energy 
spectrum of muons at the surface is represented by a power law with constant exponent 
and the energy loss parameters a and b, are taken as constants. The differential proba- 
bility of a muon transferring a fraction u of its energy in an interaction +(U) du is assumed 
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to be independent of energy also. In the solution given by Zatsepin and Mikhalchi 
(1962) it is further assumed,that for fluctuating losses +(U) de = dv/c. The formulation of 
Nishimura (1964) on the other hand allows more complicated expression for @r)di: 
but is restricted to integral values of the exponent of the muon spectrum. Kobayakawa 
(1967) has shown how the method of Nishimura can be modified to take into account ii 
specific energy dependence by using, for parameters, effective constant values that change 
with energy and depth underground. 

All of the calculations so far, except those of Zatsepin and Mikhalchi have been 
made for given values of the energy loss parameters, chosen by the authors as the current 
best estimates for the particular rock under consideration (Hayman et ul (1963) used t w o  
sets of values corresponding to upper and lower limits estimated by them). As men- 
tioned earlier, it is important to know, however, how the muon depth intensity curve will 
change as the energy loss parameters vary over a wide range of values. The Monte Carlo 
and numerical methods, although giving the most accurate and immediately applicable 
results, are too cumbersome to apply in this case. Therefore in what follows we use the 
analytical method of Nishimura. 

2. Calculation of the enhancement factor due to fluctuations 

I f  the integral spectrum of muons at  the surface is 

N ( > E )  = KE- '  (31 

then, using the mean energy loss relation (2) and assuming a and b, constant, the intensity 
of muons at depth D ignoring the effect of fluctuations is given by 

I N F ( D j  = K -(exp(b,D)- 1) . (4 )  (;, I-: 
Nishimura has shown that when fluctuations are taken into account the intensity 1s 

given by 

for integral values of y, where 

A(S) = { 1 - (1 - U,") [bb4b( t ' )  + b,$,(U) + b,,+,,(c)] de. (6) 

The term in square brackets is the probability per unit depth of a muon transferring a 
fraction U of its energy by bremsstrahlung, pair production or photonuclear interaction. 
Equation (6) may be rewritten as 

Io1 

A(s) = b,u,(s) = b,(bbQb(s)+ bbu,(s) + bhu,,(s)) 

where bb = bb/b, is the fractional contribution of bremsstrahlung 
energy loss which is proportional to energy and 

{ 1 - ( I  -tl,">$b(U) dtl etc. 

(7) 

to the part of the 
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It is useful now to define an enhancement factor which is the ratio of the intensity ob- 
tained with fluctuations to that without. Thus 

If we now substitute (4), (5) and (7) in (9) at the same time expressing the depth in units of 
l/b, (ie d = b,D)t the enhancement factor becomes 

oc 1 
F(d, y) = (exp(d) - l)y + n, exp{ - a,(y + n)d) 

Y. n = o  

From this expression we see that the enhancement factor is independent of the ionization 
loss coefficient a and, provided that depth is written in units of l/b,, it is also independent 
of the magnitude of b,. The approximate nature of the analytical solution is due to the 
necessary assumption that bb, $,,(U) etc are independent of energy. This is sufficiently 
accurate in the energy region above 1 TeV where the fluctuation effects become important. 
The values of a&), a,(s) and a,(s) are calculated as follows. 

For bremsstrahlung we take 

u ~ ( s )  = 

corresponding to the complete screening approximation. 
For photonuclear interactions 

1 1  {l-(l-uy}-ln-du. 
v u  

The expression for +,(U) used here is derived from the Williams-Weizsacker relation 
for the virtual photon flux. 

For pair production $,(U) cc l / u 3  so that the probability of appreciable energy losses 
in a single interaction is small. If we set +,(U) = 6(vo - u)/uo and then let uo tend to 
zero we obtain a,(s) = s corresponding to a nonfluctuating energy loss due to pair 
production. We use this as a sufficiently accurate approximation. (Setting A(s) = b,s 
in (5) reduces it to the nonfluctuating expression (4).) 

Values of a&), a,(s) and a,(s) are given in figure 1 for s running from 1 to 30. For 
d = 1 the summation in (10) converges sufficiently rapidly that higher terms than the 
thirtieth can be neglected. The convergence improves as d increases and for d = 4 
only 10 terms are needed. Because of the smooth variation of a,(s) with s one can write 
the term 

a 
--u,(y + n) N 
ay 

a,(? + n+ 1)- a,(y + n-  1) 
2 (13) 

We also show in figure 1 the values of a(s) obtained for +(U) oc l/u. This approximation 
was used for the bremsstrahlung losses by Zatsepin and Mikhalchi (1962) and Hayman 
et a1 (1963). They fall below the values a&) and this will give an overestimate of the 
effect of fluctuations. 

t Nishimura expresses the depth in cascade units (ie l/bb). 
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2 

I 

Figure 1. Parameters used in calculating the enhancement factor due to fluctuations in 

muon range. up pair production losses treated as a nonfluctuating process; a, photonuclear 
interaction losses ; ab bremsstrahlung losses ; ab( l / u  case) bremsstrahlung losses under the 
approximation 4 ( u )  x l!c; a, losses due to interactions with a constant inelasticity of 
0.5. 

I t  is interesting to consider muons interacting with constant inelasticity to.  In this 
case there would be an additional term in equation (7) involving ai(s) = { 1 -( 1 - U , ) ~ } ) / L ~ ~  . 
The curve for inelasticity equal to 0.5 is given in figure 1. For a completely inelastic 
interaction where the muon loses all of its energy ai = 1 for all s. Adding a constant 
value Ai to A(s) in (5) is equivalent to multiplying Z,(D) by exp( - A,D) where Ai is the 
probability per unit depth of a completely inelastic interaction. 

One may compare the values of a(s) in figure 1 with the equivalent values tabulated 
up to s = 19 by Kobayakawa (1967). His value for bremsstrahlung with complete 
screening is identical to ours. Kobayakawa's accurate expression for 4,(u)  leads to a 
more slowly increasing ap(s). For example, at s = 19 the value is ap = 16.4. He finds 
that pair production gives about 7 % of the total fluctuation effect while we have ignored 
fluctuations in this case. He uses a much more complicated expression for ~ J v )  which 
results in a,(s) which is weakly energy dependent. In the region 1 to 10 TeV his an(19) 
is approximately 6.5 while our value is 7-09. We will, therefore, obtain a slightly smaller 
enhancement due to fluctuations in the photonuclear energy loss than Kobayakawa. 

3. Dependence of the enhancement on the parameters of energy loss 

We have shown that the enhancement factor F(d,  y) depends only on the relative values 
bb, bb and b;. 

In figures 2 ,3  and 4 this dependence is illustrated. The upper curves show F(d,  y )  - 1 
for b; = 0 with bb/bb varying from 0.75 to 1.50. The pair production energy loss of 
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3" ;::;I 
2 

0.8 
2 3 4 5 

Depth d (units of l/bt) 

Figure 2. Enhancement factor due to fluctuations in muon range for y = 2. Upper curves, 
enhancement factors for bk = 0 and various values of bb/bb (shown on the figure). Lower 
curves, ratios by which the corresponding upper curves must be multiplied to obtain 
F(d, 7)- 1 for b: = 0.5. 

- lo-'l[l 
. .  

U'I 3 
I I I 1 

I 2 3 4 5 
Depth dcunits o f  I/b,) 

Figure 3. Enhancement factor due to fluctuations in muon range for y = 3 (upper and 
lower curves as for figure 2). 

Mando and Ronchi leads to a value of about 0.9 for the ratio while the Kelner and Kotov 
evaluation leads to approximately 1.3. 

The lower curves show the ratio of F(d, y)-  1 for bk = 0.5 to F(d, 7)- 1 for b', = 0 
as a function of the ratio bi/bb. The reason that the effect of changing b', is so small is 
that a,(s) is close to the mean of a&) and a,(s) so that a,($ is insensitive to b:. 0.5 is a 
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Figure4. Enhancement factor due to fluctuations in muon range for ; = 4 (upper and 
lower curves as for figure 2). 

generous upper limit to b;. To find the value of F(d ,  y )  for given bb, b6 and 6 ,  first obtain 
the value for bh = 0 from the upper curves and then correct it for a finite h; using the 
lower curves. A linear interpolation can be used for values of b',, less than 0.5. 

The enhancement factors as they stand can only be used for incident power law 
spectra with constant integral exponents. A plot of lg(F(d,y)) against 7 allows non- 
integral values of 7 to be interpolated simply. For an incident spectrum with varying 
exponent the procedure is as follows. The spectrum is represented as a linear combina- 
tion of power law functions 

N ( > E )  = C K i E - "  
I 

(14) 

where the coefficients K i  need not be all positive. Then 

Z,(D) = K i  - (exp(b,D)- 1) F ( D ,  yi). (15) 
i i :, 1 -..ic 

The representation (14) need only be precise over a limited range of energy. This can be 
seen from equation (1) where the integrand is significant over about one decade of energy 
only, due to the sharp decrease of N ( E )  towards higher energies and of P(D, E )  towards 
low energies. Outside the important region the linear combination may strongly deviate 
from N ( E )  but at the larger energy side it should decrease steeply enough so that one 
gets a very small contribution in (1). 

4. Comparison with other workers 

We have compared the enhancement factors given by previous workers with our 
F(d, y )  in each case using the appropriate values of the energy loss parameters. We 
consider the agreement to be satisfactory if the two enhancement factors differ by less 
than 10% (this exceeds the statistical accuracy of measured muon intensities in the 
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relevant depth region). We find satisfactory agreement with Hayman et a1 (1963), 
Oda and Murayama (1965) and Osborne et aZ(1968). The first gives slightly higher values 
but this is accounted for by their assumption that $(U) N l / u  which overestimates the 
effect of fluctuations. The enhancement factor of Osborne et al is rather lower at the 
largest depths. This is probably due to their taking too large a depth cell (100 hgcm-2) 
in their Monte Carlo calculation. Re-running some of the calculations with a depth cell 
of 50 hgcm-2 results in a slightly bigger enhancement factor. For comparison with 
Kobayakawa (1967) we estimate the effective constant values of the energy loss parameters 
to be bb = 1.67 x b, = 1.53 x and b, = 0.3 x g-' cm2. His F(d,  y )  
increases rather faster with depth than ours but agreement is satisfactory down to 10 000 
hgcm-?. The enhancement factors of Miyake et a1 (1964) are significantly lower than 
ours for y = 2 and 3. This is probably accounted for by their use of too large units of 
depth in their numerical calculations. 

Zatsepin and Mickhalchi (1962, 1965) have given an analytical solution of the 
fluctuation problem. From their expressions and tabulated values one can obtain the 
enhancement factor as a function of y and the ratio b,/bb (photonuclear interactions are 
ignored). We have compared our results with theirs for the case b,/bb = 1 and find 
satisfactory agreement over the whole range of depths when one takes into account 
that they have used the approximation 4 b ( u )  a l / u .  

Menon and Ramana Murthy (1967) in their review article give values of the 
enhancement factor that they calculated from Zatsepin and Mikhalchi's formulae for 
b,/b, = 0.89. These values are higher by up to a factor of two than the values we obtain 
from the same formulae and we believe them to be in error. 

and 
b, = 1-7 x g- cm2 and ignoring photonuclear losses. His values are systematically 
higher than ours for the same parameters and in fact agree closely with those that we 
obtain for b,/bb = 0.65. He does not state explicitly what forms of the function 4 ( u )  
were used in evaluating A(+ It seems probable that the fluctuations in pair produc- 
tion losses have been overestimated. 

In the present work it is assumed that the ionization loss coefficient a is a constant. 
Nishimura (1965) has calculated the effect on the enhancement factor of using the true 
logarithmically increasing ionization loss (2.55 +0.076 In (E/1150 GeV)) MeV g-' cm2 
as opposed to a constant value of 2.55 MeV g- ' cm2. He concludes that the effect is 
significant, for instance, for y = 3 and d = 2 the enhancement factor is increased by 
18 % due to the logarithmic increase in ionization loss. It is difficult to see physically why 
the effect should be so large particularly in view of the fact that for a constant rate of 
ionization loss a, F(y ,  d )  is independent of the value of a. To check this we have calculated 
the enhancement factor by the Monte Carlo method with and without the logarithmic 
increase in a, for y = 3 and d ranging from 1.5 to 4 and do not substantiate this effect. 
We conclude that it is sufficiently accurate to compute the enhancement factor without 
regard to the variation of a. Although in calculating the intensity without fluctuations 
IN#), to which the enhancement factor is applied, one should use the accurate value of 
the ionization loss. 

Nishimura (1964) gives values for the enhancement factor for b, = 2.2 x 

5. Conclusion 

The analytical method in general gives satisfactory agreement with the enhancement 
factors obtained by previous workers when the same values of the energy loss parameters 
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are used. In those cases where a discrepancy exists reasons for it have been advanced. 
We conclude that the approximations inherent in the analytical approach do not have a 
significant effect. 

We have presented the results in such a way that the enhancement factors can easily 
be obtained for a wide range of values of the energy loss parameters. However. if the 
muon has no anomalous interaction, there is a restricted range of possible values for 
these parameters and from this we can obtain a probable uncertainty in the enhancement 
factors. For standard rock we take b, = 1.77 x g - '  cm'. Values for b,  range 
from 1.58 x g- cm2 from Kelner 
and Kotov. Cassiday gives the most likely value of b, as 0.21 x g- '  cm2 which is 
also the smallest of those that he quotes. I t  seems to us that b, could be as large as 
0.7 x g- cm2 without involving any new form of interaction. Thus wz have a mini- 
mum value b, = 3.56 x g- ' cm2 and a maximum value b, = 4.77 x lo-" E- '  cm2. 
The range of values of the enhancement factor corresponding to those is shown in figure 5. 

g-- * cm2 from Mando and Ronchi to 2.3 x 

I Y=4 / I 
Y 30- 

* I 

I 2 3 4 5 
I 

Depth d (uni ts of  l/bt) 

Figure 5. Percentage uncertainty In the enhancement factors due to our estimate of the 
possible range of values of the total muon energy loss ( F ( d ,  Y),,,,"~, - F ( d ,  b J ,  F (d ,  ;)maxh, 

It is important to realize that this does not reflect the full amount of the uncertainty in 
converting from the muon energy spectrum at the surface to the expected depth intensity 
curve. The intensity INF(D) to which the enhancement factor is applied is very sensitive 
to the numerical value of b,. 
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